
© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 1

LATTICE PROPRIETARY

Lattice VHDL Training
Part I

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 2

LATTICE PROPRIETARY

VHDL

Basic Modeling Structure

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 3

LATTICE PROPRIETARY

VHDL Design Description

• VHDL language describes a digital system as a set of modular blocks.
Each modular block is described by a pair of entity and architecture.

Ripple Carry CounterRipple Carry Counter

T_FF0T_FF0 T_FF1T_FF1 T_FF2T_FF2 T_FF3T_FF3

entity counter architecture counter_design of counter
…. ….. …. ….
end counter; end counter_design;
entity tff architecture tff_design of tff is
…. …. …. ….
end tff; end tff;
entity inv architecture inv_design of inv
…. ….. …. ….
end inv; end inv_design;
entity dff architecture dff_design of dff is
…. …. …. ….
end dff; end dff;

DFFDFF INVINV DFFDFF INVINV DFFDFF INVINV DFFDFF INVINV

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 4

LATTICE PROPRIETARY

VHDL Design Descriptions
• VHDL design description consist of an ENTITY and

ARCHITECTURE pair
The ENTITY describes the design I/Os

The ARCHITECTURE describes the content of the design

A[7:0]

B[7:0]
O[7:0]

reset

clk

my_design

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 5

LATTICE PROPRIETARY

The Entity - example

• VHDL description of the entity:
ENTITY black_box is

port (rst : IN std_logic;
clk : IN std_logic;

d : IN std_logic_vector (7 downto 0);
q : BUFFER std_logic_vector (7 downto 0);

co : OUT std_logic);
END black_box;

Black Box

D[7:0]

Rst

CLK

Q[7:0]

CO

• Note: VHDL is NOT case sensitive!

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 6

LATTICE PROPRIETARY

The Entity - General Format for Port Declaration
• Entity only describes the circuit interface but not function

ENTITY entity_name IEEE Standard
is port (for Physical Data Type

(0, 1, x, Z)
One-Bit

… …

clk : IN std_logic;
q : OUT std_logic_vector(0 to 7));

port_name : port_mode port_type

END entity_name;

Unique within Entity

communication
points

Direction of the
communication
points

Data type of the
ports

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 7

LATTICE PROPRIETARY

PORT Modes

• IN

• OUT

• OUT (Tri-State)

• INOUT

• Buffer

oe

oe

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 8

LATTICE PROPRIETARY

PORT Types

• integer Useful as index holders for loops and constants.
When used for I/O signals, usually reference
counters

• Boolean Can take values of ‘TRUE’ and ‘FALSE’

• std_logic Standard industry logic type, has values of ‘0’,
‘1’, ‘X’, and Z’ defined by IEEE std 1164.

• std_logic_vector A grouping of std_logic, standard industry logic
type

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 9

LATTICE PROPRIETARY

PORT Types
• VHDL is a strongly typed language. You cannot assign one

signal type to another signal type.
ENTITY example is

port (Q1 : OUT Integer; …
Q2 : OUT std_logic_vector(3 downto 0));

END example;

Architecture behavior of example is
begin

-- Q2 is declared in 4 bit std_logic_vector type

Q1 <= 7; -- 7 : decimal integer;

Q2 <= “1001”; -- “1001” : 4 bit std_logic vector
……

Q2 <= 9; -- 9 : decimal integer
… …

end behavior;

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 10

LATTICE PROPRIETARY

The Architecture body - General Format
Entity entity_name is port (… …);
End entity_name;

ARCHITECTURE architecture_name of entity_name is

signal ai, bi : std_logic;

BEGIN
ai <= a;
bi <= b;
y <= (ai AND bi);
z <= (ai OR bi);
x <= ‘1’;
w <= “1010”;

END architecture_name;

ai
bi

Architecture must be
associated with entity

Architecture declaration section:
declare internal signals (nets)

4

a

b

z

y

x

w

‘1’

“1010”

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 11

LATTICE PROPRIETARY

Entity / Architecture / Libraries - example
• Every design has an ENTITY/ARCHITECTURE pair

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY logic is
PORT (a,b : IN std_logic;

z, x, y: OUT std_logic;
w: OUT std_logic_vector (3 downto 0));

END logic;

ARCHITECTURE behavior of logic is
signal ai, bi : std_logic;

BEGIN
ai <= a;
bi <= b;
y <= (ai AND bi);
z <= (ai OR bi);
x <= ‘1’;
w <= “1010”;

END behavior;

ai
bi

a

b

z

y

x‘1’

4 w“1010”

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 12

LATTICE PROPRIETARY

Libraries
VHDL
Text Files

Library Directories Structure

ieee

std_logic_1164

std_logic_unsigned

std

textio

Package
std_logic_1164

Package
std_logic_unsigned

Package textio
Wrap VHDL
Text Files
into VHDL
Package

VHDL
Compiler

1*&%$#-+
klo+@!&(
00-.l”:?_

Compiled
Machine
Codes

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 13

LATTICE PROPRIETARY

Libraries
• Library is a place to keep precompiled packages so that they can be

used in other VHDL designs

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ieee - symbolic name for IEEE standard library.
Contains packages std_logic_1164,
std_logic_unsigned, etc.

std_logic_1164 - name of the VHDL package
Package std_logic_1164 contains declaration
of data type for std_logic and
std_logic_vector.

std_logic_unsigned - name of the VHDL package.
Package std_logic_unsigned contains the
declaration of operators, functions for
std_logic and std_logic_vector arithmetic
operations.

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 14

LATTICE PROPRIETARY

Libraries
LIBRARY ieee;
-- Makes Library ieee visible
-- to the following VHDL design.
USE ieee.std_logic_1164.ALL;
-- Indicates design can use all
-- declarations of Package
-- std_loigc_1164 in library ieee.
USE ieee.std_logic_unsigned.ALL;

Library Directories Structure

ieee

std_logic_1164

std_logic_unsigned

… …

Package
std_logic_1164

Compiled Codes

ENTITY design is Port
(q : OUT std_logic; …)

End design;
architecture context of design is
begin

q <= a + b; … …
End context;

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 15

LATTICE PROPRIETARY

VHDL Language Syntax &

VHDL Design Methods

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 16

LATTICE PROPRIETARY

Concurrent Statement
Instantiation Statement Structural Modeling

Architecture structural_modeling of one_bit_half_adder is
begin

X1: XOR2 Port Map (Z0 => sum, A0 => a, A1 => b);
A1: AND2 Port Map (Z0 => cout, A0 => a, A1 => b);

-- A1: AND2 Port Map (cout, a, b);

end structural_modeling;

A0

A1
Z0

Library Symbol: AND2

a
b

A0

A1

Z0

sum

cout

X1

A1

Entity AND2 is Port (
Z0 : out std_logic;
A0 : in std_logic;
A1 : in std_logic);
END AND2;

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 17

LATTICE PROPRIETARY

Concurrent Statement
• Dataflow Modeling by

boolean equations assignments
conditional assignments (When-Else, With-Select-When)

Architecture dataflow_modeling of example is
signal n1, n2, n3 : std_logic; -- Declare Internal Nets

begin
x <= n2 OR n3; n2 <= b AND sell;
n3 <= n1 AND a; n1 <= NOT sell;

-- x <= (a AND (NOT sel1)) OR (b AND sel1);
end example;

b

sell

a

xn1

n2

n3

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 18

LATTICE PROPRIETARY

Concurrent Statement - Boolean Equation Assignment
• Boolean Equation Assignment Format

x <= a AND b ;

Left Operand Right Operands Operator
The ‘<=‘ operation is also used to signify ‘taking on the
value of’

• Concatenate Assignment
c <= a(2 downto 0) & b(3 downto 0);

c(6) <= a(2); c(5) <= a(1); c(4) <= a(0);
c(3) <= b(3); c(2) <= b(2); c(1) <= b(1); c(0) <= b(0);

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 19

LATTICE PROPRIETARY

Standard VHDL Operators
• Logical Operators

AND
OR
XOR
NOT

• Relational Operators
= Equal to
/= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Boolean “True” or “False”

Logic ‘1’ or ‘0’

((a AND b) = (c OR d))

a, b, c, d : std_logic

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 20

LATTICE PROPRIETARY

Concurrent Conditional Assignment
• With-Select-When

• Example

entity mux is port (
a, b, c, d:in std_logic;
s: in std_logic_vector(1 downto 0);
x: out std_logic);

end mux;

architecture archmux of mux is
begin
with s select

x <= a when “00”, -- x is assigned based on s
b when “01”,
c when “10”,
d when “11”;

end archmux;

a
b
c
d

s0
s1

x

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 21

LATTICE PROPRIETARY

Concurrent conditional Assignment
• When-Else

• Same example of 4-to-1 mux

architecture archmux of mux is

begin
x <= a when (s = “00”) else

b when (s = “01”) else
c when (s = “10”) else
d;

end archmux;

• WITH-SELECT-WHEN must specify all mutually
exclusive conditions

• WHEN-ELSE does not have to

a
b
c
d

s0
s1

x

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 22

LATTICE PROPRIETARY

With-Select-When vs. WHEN-ELSE

with s select
x <= a when “00”,

b when “01”,
c when “10”,
d when “11”;

x <= a when (s = “00”) else
b when (s = “01”) else
c when (s = “10”) else
d;

Specify chose values based

on data type of “S”

Specify Boolean conditions

• Specify all mutual
exclusive conditions

• Don’t have to specify
all mutually exclusive
conditions, the last one
can be defaulted after
“ELSE” keyword

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 23

LATTICE PROPRIETARY

Sequential Statements
• Process Statement Behavioral Modeling

• A PROCESS is used to describe sequential events and is included in
the ARCHITECTURE of the design.

• An ARCHITECTURE can contain several PROCESS statements.

• PROCESS statements have 3 parts:

Sensitivity list :
• includes signals used in the PROCESS
• process is active when a signal in sensitivity list changes value

PROCESS :
• the description of behavior

BEGIN - END PROCESS statement:
• describes the beginning & ending of the PROCESS

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 24

LATTICE PROPRIETARY

Process - Sequential Statement

• Simple example of PROCESS
mux: PROCESS (a, b, s) -- the sensitivity list

BEGIN
if (s = ‘0’) then

x <= a;
else -- define the process section

x <= b;
end if;

END PROCESS mux;

• Here the process ‘mux’ is sensitive to signals ‘a’,‘b’ and
‘s’. Whenever signal ‘a’ or ‘b’ or ‘s’ changes value, the
statements inside the process will be evaluated

a

b

s

x

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 25

LATTICE PROPRIETARY

IF - THEN - ELSE
• It is a sequential statement and can only be used in PROCESS

• To select a specific execution path based on Boolean evaluation of a
condition or set of conditions

• Cascaded If-Then-Else
PROCESS (select, a, b, c, d)
BEGIN

if (select = “00”) then
step <= a;

elsif (select = “01”) then
step <= b;

elsif (select = “10”) then
step <= c;

else
step <= d;

end if;
END PROCESS;

• ELSIF allows multiple conditions in one statement
• Must have an “END IF” statement for every “IF” statement

a
b
c
d

sel0
sel1

step

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 26

LATTICE PROPRIETARY

IF - THEN - ELSE

• Nested If-Then-Else
PROCESS (select, a, b, c, d)
BEGIN

if (select = “00”) then
step <= a;

else
if (select = “01”) then

step <= b;
else

if (select = “10”) then
step <= c;

else
step <= d;

end if;
end if;

end if;

END PROCESS;

a
b
c
d

sel0
sel1

step

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 27

LATTICE PROPRIETARY

CASE - WHEN

• It is a sequential statement and can only be used in PROCESS
ARCHITECTURE archdesign OF design IS
BEGIN

decode: PROCESS (a, b, c, option)
BEGIN

CASE option IS
WHEN "00" => output <= a;
WHEN "01" => output <= b;
WHEN "10" => output <= c;
WHEN OTHERS => output <= '0';

END CASE;
END PROCESS decode;

END archdesign;

• OTHERS is all other possible value for signals of type std_logic

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 28

LATTICE PROPRIETARY

Data Objects -Signal, Constant, Variable

• SIGNAL
used to declare internal signals; not external signals
interconnects components
may be assigned to an external signal

ARCHITECTURE behavior of example is
SIGNAL count: std_logic_vector (3 downto 0);
SIGNAL flag: integer;
SIGNAL mtag: integer range 0 to 15;
SIGNAL stag: integer range 100 downto 0;

BEGIN

--mtag is a 4-bit array; MSB is mtag(0); LSB is mtag(3)
--stag is a 7-bit array; MSB is stag(6); LSB is stag(0)
--always declared in ARCHITECTURE section

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 29

LATTICE PROPRIETARY

Data Objects

• SIGNAL in User-defined enumeration type

represents state elements in a state-machine

ARCHITECTURE behavior of example is

TYPE states is (state0, state1, state2, state3);

“00” “01” “10” “11”

SIGNAL memread: states;

SIGNAL q : std_logic_vector(0 to 3);
SIGNAL a : integer;

BEGIN

--each state (state0, state1, etc) represents a distinct state.

Pre-Defined Data Type

or

User-defined enumeration
data type

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 30

LATTICE PROPRIETARY

Data Objects

• CONSTANT
holds a specific value of a type that cannot be changed within the
design description

ARCHITECTURE behavior of example is
CONSTANT width: integer := 8;

BEGIN
-- “width” is a constant with integer type and has a value of “8”

• VARIABLE
used to declare local values only within a given PROCESS.

PROCESS (s)
VARIABLE result: integer := 12;

BEGIN

-- “result” is a VARIABLE with an intial value of “12”.
-- value of “result” may be modified within a PROCESS.

• variable assignment use :=

• port/signal assignment use <=

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 31

LATTICE PROPRIETARY

Understand VHDL Synthesis

and

VHDL Design Application

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 32

LATTICE PROPRIETARY

REGISTERS in Behavioral VHDL
• 3 ways to describe a register

PROCESS (clk)
BEGIN
IF (clk’event and clk=‘1’) THEN -- rising edge of clk

q <= d;
END IF;

END PROCESS;
-- falling edge of clk => (clk’event and clk = ‘0’)

PROCESS (clk)
BEGIN
IF RISING_EDGE (clk) THEN

q <= d;
END IF;

END PROCESS;

PROCESS -- no sensitivity list
BEGIN
WAIT UNTIL clk’event AND clk = '1';

q <= d;
END PROCESS;

d

clk

q

clk0

1

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 33

LATTICE PROPRIETARY

Synchronous/Asynchronous Reset Register
ARCHITECTURE behavior of synchronous_reset_register is
BEGIN

PROCESS (clk)
BEGIN IF (clk’EVENT and clk = ‘1’) then

IF (rst = ‘1’) then
q <= ‘0’;

ELSE
q <= d;

END IF;
END IF;

END PROCESS;
END behavior;

ARCHITECTURE behavior of Asynchronous_reset_register is
BEGIN

PROCESS (rst, clk)
BEGIN IF (rst = ‘1’) then

q <= ‘0’;
ELSIF (clk’EVENT and clk = ‘1’) then

q <= d;
END IF;

END PROCESS;
END behavior;

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 34

LATTICE PROPRIETARY

Synchronous Reset Counter

Entity counter is
port (clock : IN std_logic;

reset : IN std_logic;
Q: OUT std_logic_vector(3 downto 0));

End counter;

Architecture behavior of counter is
signal count : std_logic_vector(3 downto 0);

begin upcount: PROCESS (clock)
BEGIN IF (clock’EVENT AND clock = '1') THEN

IF reset = '1' THEN
count <= “0000”; -- synchronous

ELSE
count <= count + “0001”;

END IF;
END IF;

END PROCESS upcount;
Q <= count;

End behavior;

count

Q
clock

reset

Signal “count” represent
hardware NET

Output Port “Q”

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 35

LATTICE PROPRIETARY

Asynchronous Reset Counter

Entity counter is
port (clock, reset : IN std_logic;

count: buffer std_logic_vector(3 downto 0));
End counter;

Architecture behavior of counter is
begin upcount: PROCESS (clock, reset)

BEGIN IF (reset = '1') THEN
-- reset has a higher priority
count <= “0000”; -- asynchronous

ELSIF (clock’EVENT AND clock = '1') THEN
count <= count + “0001”;

END IF;
END PROCESS upcount;

End behavior;

Buffer Mode
Output Port
“count”

clock

reset

count

count

count

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 36

LATTICE PROPRIETARY

LATCHES - in Behavioral VHDL
ARCHITECTURE behavior of d_latch is
BEGIN

PROCESS (enable)
BEGIN

IF (enable = '1') then
outa <= ina;

END IF;
END PROCESS;

END behavior;

ARCHITECTURE behavior of set_reset_latch is
BEGIN

PROCESS (set, reset)
BEGIN

IF (set = '1' AND reset = '0') then
outa <= '1';

ELSIF (set = '0' AND reset = '1') then
outa <= '0';

END IF;
END PROCESS;

END behavior;

ina

enable

outa

set

reset

outa

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 37

LATTICE PROPRIETARY

Synchronous/Asynchronous Reset Latch
ARCHITECTURE behavior of synchronous_reset_d_latch is
BEGIN

PROCESS (enable)
BEGIN IF (enable = ‘1’) then

IF (rst = ‘1’) then
outa <= ‘0’;

ELSE
outa <= ina;

END IF;
END IF;

END PROCESS;
END behavior;

ARCHITECTURE behavior of asynchronous_reset_d_latch is
BEGIN

PROCESS (enable, rst)
BEGIN IF (rst = ‘1’) then

outa <= '0’;
ELSIF (enable = ‘1’) then

outa <= ina;
END IF;

END PROCESS;
END behavior;

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 38

LATTICE PROPRIETARY

Output Enables
Entity design is port (q : out std_logic_vector(0 to 6); …);
End design; -- Tri-State Port declared as OUT

ARCHITECTURE behavioral of design is
BEGIN
q <= qint when (oe=’1') else "ZZZZZZZ" ;

END behavioral;

ARCHITECTURE behavioral of design is
BEGIN
PROCESS (oe)

BEGIN if (oe = ‘1’) then
q <= qint;

else
q <= “ZZZZZZZ”;

end if;
END PROCESS;

END behavioral;

oe

qqint

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 39

LATTICE PROPRIETARY

Bi-Directional Port
Entity design is port(-- Bi-Directional Port declared as INOUT

data:inout std_logic_vector(0 to 7);...);
End design;

ARCHITECTURE behavior OF design IS
SIGNAL ext_input : std_logic;

BEGIN
data <= count WHEN oe = ’1' ELSE “ZZZZZZZZ” ;
ext_input <= data;

END behavior;

ARCHITECTURE behavior OF design IS
SIGNAL ext_input : std_logic;

BEGIN
PROCESS (oe)
BEGIN

IF (oe = ‘1’) THEN
data <= count;

ELSE
data <= “ZZZZZZZZ”;

END IF;
END PROCESS;
ext_input <= data;

END behavior;

oe

count

ext_input

data

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 40

LATTICE PROPRIETARY

CPLD Optimization - Caution using “If-Then-Else”

• The following VHDL file does
not specify the value of “q”
when “a1” is equal to “0”, thus
creating a “Latch”.

PROCESS (a1, d)

BEGIN

IF (a1 = ‘1’) then

q <= d;

END if;

END PROCESS;

• The following VHDL file
specifies the value of “q” when
“a1” is equal to “0”, thus
creating an AND gate

PROCESS (a1, d)
BEGIN

IF (a1 = ‘1’) then
q <= d;

ELSE
q <= ‘0’;

END if;
END PROCESS;

a1

d

qd

a1

q

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 41

LATTICE PROPRIETARY

CPLD Optimization - Caution using “Case-When”

• This VHDL file generates
unwanted latches because not all
states are defined.

signal sel:std_logic_vector(0 to 1);

PROCESS (sel,a,b)

BEGIN
CASE sel IS
WHEN “00”=>q<=a;
WHEN “11”=>q<=b;

END CASE;
END PROCESS;

• This VHDL file generates a
multiplexer correctly because
states “10” and “01” are
defined.

-- sel can choose either of
“00”,”01”,”10”, “11”

PROCESS (sel,a,b)
BEGIN

CASE sel IS
WHEN “00”=>q<=a;
WHEN “11”=>q<=b;
WHEN OTHERS=>q<=‘0’;

END CASE;
END PROCESS;

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 42

LATTICE PROPRIETARY

CPLD Optimization - Use of Parentheses

• Example listing below
generates a design that uses
three cascaded adders and three
logic levels.
PROCESS (a,b,c,d)
BEGIN

sum<=a+b+c+d;
END PROCESS;

• Example listing below, by
inclusion of two sets of
parentheses, generates two
parallel adders whose outputs the
circuit then adds. This design
results in two logic levels.

 PROCESS (a,b,c,d)
 BEGIN
 sum<=(a+b)+(c+d);
 END PROCESS;d

c

b

a

sum

a

b

c

d

sum

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 43

LATTICE PROPRIETARY

VHDL Hierarchical Design

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 44

LATTICE PROPRIETARY

Concept of Hierarchical Design

ENTITY tff is port
(d, clk, rst : in std_logic; q : out std_logic);

end tff;
ARCHITECTURE context of tff is begin

D_FF: FD21 port map(d, q, clk, rst);
NOT_Gate: INV port map(d, q);

end context;

ENTITY tff is port
(d, clk, rst : in std_logic; q : out std_logic);

end tff;
ARCHITECTURE context of tff is begin

D_FF: FD21 port map(d, q, clk, rst);
NOT_Gate: INV port map(d, q);

end context;

ENTITY ripple_counter is port
(cnt_en, clk, rst : in std_logic; q : out std_logic);

end ripple_counter;

ARCHITECTURE structure of
ripple_counter is

BEGIN
tff0 : tff port map (…);
tff1 : tff port map (…);
tff2 : tff port map (…);
tff3 : tff port map (…);

end structure;

ENTITY ripple_counter is port
(cnt_en, clk, rst : in std_logic; q : out std_logic);

end ripple_counter;

ARCHITECTURE structure of
ripple_counter is

BEGIN
tff0 : tff port map (…);
tff1 : tff port map (…);
tff2 : tff port map (…);
tff3 : tff port map (…);

end structure;

Low-level Design

High-Level Design

Ripple Carry CounterRipple Carry Counter

T_FF0T_FF0 T_FF1T_FF1 T_FF2T_FF2 T_FF3T_FF3

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 45

LATTICE PROPRIETARY

COMPONENT

• Top level example

ENTITY addmult is
port(sig1,sig2: in std_logic_vector(0 to 3);

result: out std_logic_vector(0 to 7));
end addmult;

ARCHITECTURE structure of addmult is
SIGNAL s_add: std_logic_vector(0 to 7);

COMPONENT add -- component declaration
port(op1,op2: in std_logic_vector(0 to 3);

ret: out std_logic_vector(0 to 7));
end component;

--component instantiation
--name of lower level component

BEGIN --key word connecting two levels
add1: add port map(op1=>sig1, op2=>sig2, ret=>s_add);

result <= s_add - “00000001”;
end structure;

Top Level: Addmult
component declaration:

Add
Instantiation of component

Top Level: Addmult
component declaration:

Add
Instantiation of component

Low Level:
Add

Low Level:
Add

© LATTICE SEMICONDUCTOR CORPORATION 1998

FAE Training
VHDL Training
February 2000 46

LATTICE PROPRIETARY

COMPONENT (cont.)
• Top level design contains component declaration

COMPONENT add
port(op1,op2: in std_logic_vector(0 to 3);

ret: out std_logic_vector(0 to 7));
end component;

• Lower level design of previous example
ENTITY add is

PORT(op1,op2: in std_logic_vector(0 to 3);
ret: out std_logic_vector(0 to 7));

end add;
ARCHITECTURE dataflow of add is
BEGIN

ret <= op1 + op2;
end dataflow;

• Lower level design can be in a separate file or in the same
file as the top-level design

Component
name identical
to entity name in
low-level design.

port declaration
in component
and low-level
entity are
identical.

	VHDL Design Description
	VHDL Design Descriptions
	The Entity - example
	The Entity - General Format for Port Declaration
	PORT Modes
	PORT Types
	PORT Types
	The Architecture body - General Format
	Entity / Architecture / Libraries - example
	Libraries
	Libraries
	Libraries
	Concurrent Statement
	Concurrent Statement
	Concurrent Statement - Boolean Equation Assignment
	Standard VHDL Operators
	Concurrent Conditional Assignment
	Concurrent conditional Assignment
	With-Select-When vs. WHEN-ELSE
	Sequential Statements
	Process - Sequential Statement
	IF - THEN - ELSE
	IF - THEN - ELSE
	CASE - WHEN
	Data Objects-Signal, Constant, Variable
	Data Objects
	Data Objects
	REGISTERS in Behavioral VHDL
	Synchronous/Asynchronous Reset Register
	Synchronous Reset Counter
	Asynchronous Reset Counter
	LATCHES - in Behavioral VHDL
	Synchronous/Asynchronous Reset Latch
	Output Enables
	Bi-Directional Port
	CPLD Optimization - Caution using “If-Then-Else”
	CPLD Optimization - Caution using “Case-When”
	CPLD Optimization - Use of Parentheses
	Concept of Hierarchical Design
	COMPONENT
	COMPONENT (cont.)

